spectrochempy.LSTSQ
- class LSTSQ(*, log_level='WARNING', warm_start=False, fit_intercept=True, positive=False)[source]
- Ordinary least squares Linear Regression (LSTSQ). - Use - sklearn.linear_model.LinearRegression- LinearRegression fits a linear model with coefficients - w = (w1, ..., wp)to minimize the residual sum of squares between the observed targets in the dataset, and the targets predicted by the linear approximation.- Parameters:
- log_level (any of [ - "INFO",- "DEBUG",- "WARNING",- "ERROR"], optional, default:- "WARNING") – The log level at startup. It can be changed later on using the- set_log_levelmethod or by changing the- log_levelattribute.
- warm_start ( - bool, optional, default:- False) – When fitting repeatedly on the same dataset, but for multiple parameter values (such as to find the value maximizing performance), it may be possible to reuse previous model learned from the previous parameter value, saving time.- When - warm_startis- True, the existing fitted model attributes is used to initialize the new model in a subsequent call to- fit.
- fit_intercept ( - bool, optional, default: True) – Whether to calculate the- interceptfor this model. If set to- False, no- interceptwill be used in calculations (i.e., data is expected to be centered).
- positive ( - bool, optional, default: False) – When set to- True, forces the coefficients (- coef) to be positive.
 
 - See also - NNLS
- Non-Negative least squares Linear Regression. 
 - Initialize the BaseConfigurable class. - Parameters:
- log_level (int, optional) – The log level at startup. Default is logging.WARNING. 
- **kwargs (dict) – Additional keyword arguments for configuration. 
 
 - Attributes Summary - Return the X input dataset (eventually modified by the model). - Return the - Yinput dataset.- Estimated coefficients for the linear regression problem. - traitlets.config.Configobject.- Whether to calculate the - interceptfor this model.- Return a float or an array of shape (n_targets,). - Return - logoutput.- When set to - True, forces the coefficients (- coef) to be positive.- Methods Summary - fit(X[, Y, sample_weight])- Fit linear model. - parameters([replace, removed, default])- Alias for - paramsmethod.- params([default])- Return current or default configuration values. - predict([X])- Predict features using the linear model. - reset()- Reset configuration parameters to their default values. - score([X, Y, sample_weight])- Return the coefficient of determination of the prediction. - to_dict()- Return config value in a dict form. - Attributes Documentation - X
- Return the X input dataset (eventually modified by the model). 
 - coef
- Estimated coefficients for the linear regression problem. - If multiple targets are passed during the fit (Y 2D), this is a 2D array of shape (n_targets, n_features), while if only one target is passed, this is a 1D array of length n_features. 
 - config
- traitlets.config.Configobject.
 - description = 'Ordinary Least Squares Linear Regression'
 - fit_intercept
- Whether to calculate the - interceptfor this model. If set to- False, no- interceptwill be used in calculations (i.e., data is expected to be centered).
 - intercept
- Return a float or an array of shape (n_targets,). - Independent term in the linear model. Set to - 0.0if- fit_interceptis- False. If- Yhas units, then- intercepthas the same units.
 - log
- Return - logoutput.
 - name = 'LSTSQ'
 - Methods Documentation - fit(X, Y=None, sample_weight=None)[source]
- Fit linear model. - Parameters:
- X ( - NDDatasetor array-like of shape (n_observations,:term:- n_features)) – Training data, where- n_observationsis the number of observations and- n_featuresis the number of features.
- Y (array-like of shape (n_observations,) or (n_observations,:term: - n_targets)) – Target values. Will be cast to- X’s dtype if necessary.
- sample_weight (array-like of shape (n_observations,), default: - None) – Individual weights for each observation.
 
- Returns:
- self – Returns the instance itself. 
 
 - parameters(replace="params", removed="0.8.0") def parameters(self, default=False)[source]
- Alias for - paramsmethod.- Deprecated since version 0.8.0: Use - paramsinstead.
 - predict(X=None)[source]
- Predict features using the linear model. - Parameters:
- X ( - NDDatasetor array-like matrix, shape (n_observations,:term:- n_features)) – Observations. If- Xis not set, the input- Xfor- fitis used.
- Returns:
- NDDataset– Predicted values (object of type of the input) using a ahape (n_observations,).
 
 - score(X=None, Y=None, sample_weight=None)[source]
- Return the coefficient of determination of the prediction. - The coefficient of determination \(R^2\) is defined as \((1 - \frac{u}{v})\) , where \(u\) is the residual sum of squares - ((y_true - y_pred)** 2).sum()and \(v\) is the total sum of squares- ((y_true - y_true.mean()) ** 2).sum(). The best possible score is- 1.0and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of- Y, disregarding the input features, would get a \(R^2\) score of 0.0.- Parameters:
- X ( - NDDatasetor array-like of shape (n_observations, n_features)) – Test samples.
- Y ( - NDDatasetor array-like of shape (n_observations,)) – True values for- X.
- sample_weight (array-like of shape (n_observations,), default: - None) – Sample weights.
 
- Returns:
 
 
Examples using spectrochempy.LSTSQ
