spectrochempy.fft
- fft(dataset, size=None, sizeff=None, inv=False, ppm=True, **kwargs)[source]
- Apply a complex fast fourier transform. - For multidimensional NDDataset, the apodization is by default performed on the last dimension. - The data in the last dimension MUST be in time-domain (or without dimension) or an error is raised. - To make reverse Fourier transform, i.e., from frequency to time domain, use the - iffttransform (or equivalently, the- inv=Trueparameters.- Parameters:
- dataset ( - NDDataset) – The dataset on which to apply the fft transformation.
- size (int, optional) – Size of the transformed dataset dimension - a shorter parameter is - si. by default, the size is the closest power of two greater than the data size.
- sizeff (int, optional) – The number of effective data point to take into account for the transformation. By default it is equal to the data size, but may be smaller. 
- inv (bool, optional, default=False) – If True, an inverse Fourier transform is performed - size parameter is not taken into account. 
- ppm (bool, optional, default=True) – If True, and data are from NMR, then a ppm scale is calculated instead of frequency. 
- **kwargs – Optional keyword parameters (see Other Parameters). 
 
- Returns:
- out – Transformed - NDDataset.
- Other Parameters:
- dim (str or int, optional, default=’x’.) – Specify on which dimension to apply this method. If - dimis specified as an integer it is equivalent to the usual- axisnumpy parameter.
- inplace (bool, optional, default=False.) – True if we make the transform inplace. If False, the function return a new object 
- tdeff (int, optional) – Alias of sizeff (specific to NMR). If both sizeff and tdeff are passed, sizeff has the priority. 
 
 - See also - ifft
- Inverse Fourier transform. 
 
