spectrochempy.Optimizeο
- class Optimize(*, log_level='WARNING', warm_start=False, amplitude_mode='height', autoampl=False, autobase=False, callback_every=10, constraints=None, dry=False, max_fun_calls=0, max_iter=500, method='least_squares', script='')[source]ο
- Non-linear Least-Square Optimization and Curve-Fitting. - Works on a 1D or 2D dataset. - # TODO: complete this description - Parameters:
- log_level (any of [ - "INFO",- "DEBUG",- "WARNING",- "ERROR"], optional, default:- "WARNING") β The log level at startup. It can be changed later on using the- set_log_levelmethod or by changing the- log_levelattribute.
- warm_start ( - bool, optional, default:- False) β When fitting repeatedly on the same dataset, but for multiple parameter values (such as to find the value maximizing performance), it may be possible to reuse previous model learned from the previous parameter value, saving time.- When - warm_startis- True, the existing fitted model attributes is used to initialize the new model in a subsequent call to- fit.
- amplitude_mode (any value of [ - 'area',- 'height'], optional, default:- 'height') β Initial amplitude setting mode.
- autoampl ( - bool, optional, default: False) β Whether to apply an automatic amplitude correction.
- autobase ( - bool, optional, default: False) β Whether to apply an automatic baseline correction.
- callback_every ( - int, optional, default: 10) β Number of iteration between each callback report. Used for printing or display intermediate results.
- constraints (any value, optional, default: - None) β Constraints.
- dry ( - bool, optional, default: False) β If True perform a dry run. Mainly used to check the validity of the input parameters.
- max_fun_calls ( - int, optional, default: 0) β Maximum number of function calls at each iteration.
- max_iter ( - int, optional, default: 500) β Maximum number of fitting iteration.
- method (any value of [ - 'least_squares',- 'leastsq',- 'simplex',- 'basinhopping'], optional, default:- 'least_squares') β Optimization method (see scipy.optimize docs for details).
- script ( - str, optional, default:- '') β Script defining models and parameters for fitting.
 
 - Initialize the Optimize class with configuration parameters. - Parameters:
- log_level (str, optional) β Logging level, by default βWARNINGβ. 
- warm_start (bool, optional) β If True, use warm start, by default False. 
- **kwargs (dict) β Additional keyword arguments. 
 
 - Attributes Summary - Return the X input dataset (eventually modified by the model). - The - Yinput.- Initial amplitude setting mode. - Whether to apply an automatic amplitude correction. - Whether to apply an automatic baseline correction. - Number of iteration between each callback report. - NDDatasetwith components in feature space (n_components, n_features).- traitlets.config.Configobject.- Constraints. - If True perform a dry run. - A trait whose value must be an instance of a specified class. - Return - logoutput.- Maximum number of function calls at each iteration. - Maximum number of fitting iteration. - Optimization method (see scipy.optimize docs for details). - An instance of a Python list. - Number of components that were fitted. - Object name - Script defining models and parameters for fitting. - User defined models. - Methods Summary - fit(X)- Perform a non-linear optimization of the - Xdataset.- fit_transform(X[,Β Y])- Fit the model with - Xand apply the dimensionality reduction on- X.- get_components([n_components])- Return the component's dataset: (selected n_components, n_features). - inverse_transform([X_transform])- Transform data back to its original space. - parameters([replace,Β removed,Β default])- Alias for - paramsmethod.- params([default])- Return current or default configuration values. - plotmerit([X,Β X_hat])- Plot the input ( - X), reconstructed (- X_hat) and residuals.- predict()- Return the fitted model. - reconstruct([X_transform])- Transform data back to its original space. - reduce([X])- Apply dimensionality reduction to - X.- reset()- Reset configuration parameters to their default values. - to_dict()- Return config value in a dict form. - transform([X])- Apply dimensionality reduction to - X.- Attributes Documentation - Xο
- Return the X input dataset (eventually modified by the model). 
 - amplitude_modeο
- Initial amplitude setting mode. 
 - autoamplο
- Whether to apply an automatic amplitude correction. 
 - autobaseο
- Whether to apply an automatic baseline correction. 
 - callback_everyο
- Number of iteration between each callback report. Used for printing or display intermediate results. 
 - componentsο
- NDDatasetwith components in feature space (n_components, n_features).- See also - get_components
- Retrieve only the specified number of components. 
 
 - configο
- traitlets.config.Configobject.
 - constraintsο
- Constraints. 
 - dryο
- If True perform a dry run. Mainly used to check the validity of the input parameters. 
 - fpο
- A trait whose value must be an instance of a specified class. - The value can also be an instance of a subclass of the specified class. - Subclasses can declare default classes by overriding the klass attribute 
 - logο
- Return - logoutput.
 - max_fun_callsο
- Maximum number of function calls at each iteration. 
 - max_iterο
- Maximum number of fitting iteration. 
 - methodο
- Optimization method (see scipy.optimize docs for details). 
 - modeldataο
- An instance of a Python list. 
 - n_componentsο
- Number of components that were fitted. 
 - nameο
- Object name 
 - scriptο
- Script defining models and parameters for fitting. 
 - usermodelsο
- User defined models. 
 - Methods Documentation - fit(X)[source]ο
- Perform a non-linear optimization of the - Xdataset.- Parameters:
- X ( - NDDatasetor array-like of shape (n_observations, n_features)) β Training data.
- Returns:
- self β The fitted instance itself. 
 - See also - fit_transform
- Fit the model with an input dataset - Xand apply the dimensionality reduction on- X.
- fit_reduce
- Alias of - fit_transform(Deprecated).
 
 - fit_transform(X, Y=None, **kwargs)[source]ο
- Fit the model with - Xand apply the dimensionality reduction on- X.- Parameters:
- X ( - NDDatasetor array-like of shape (n_observations, n_features)) β Training data.
- Y (any) β Depends on the model. 
- **kwargs (keyword parameters, optional) β See Other Parameters. 
 
- Returns:
- NDDatasetβ Dataset with shape (n_observations, n_components).
- Other Parameters:
- n_components ( - int, optional) β The number of components to use for the reduction. If not given the number of components is eventually the one specified or determined in the- fitprocess.
 
 - get_components(n_components=None)ο
- Return the componentβs dataset: (selected n_components, n_features). - Parameters:
- n_components ( - int, optional, default:- None) β The number of components to keep in the output dataset. If- None, all calculated components are returned.
- Returns:
- NDDatasetβ Dataset with shape (n_components, n_features)
 
 - inverse_transform(X_transform=None, **kwargs)ο
- Transform data back to its original space. - In other words, return an input - X_originalwhose reduce/transform would be- X_transform.- Parameters:
- X_transform (array-like of shape (n_observations, n_components), optional) β Reduced - Xdata, where- n_observationsis the number of observations and- n_componentsis the number of components. If- X_transformis not provided, a transform of- Xprovided in- fitis performed first.
- **kwargs (keyword parameters, optional) β See Other Parameters. 
 
- Returns:
- NDDatasetβ Dataset with shape (n_observations, n_features).
- Other Parameters:
- n_components ( - int, optional) β The number of components to use for the reduction. If not given the number of components is eventually the one specified or determined in the- fitprocess.
 - See also - reconstruct
- Alias of inverse_transform (Deprecated). 
 
 - parameters(replace="params", removed="0.8.0") def parameters(self, default=False)[source]ο
- Alias for - paramsmethod.- Deprecated since version 0.8.0: Use - paramsinstead.
 - plotmerit(X=None, X_hat=None, **kwargs)[source]ο
- Plot the input ( - X), reconstructed (- X_hat) and residuals.- \(X\) and \(\hat{X}\) can be passed as arguments. If not, the - Xattribute is used for \(X`and :math:\)hat{X}`is computed by the- inverse_transformmethod- Parameters:
- X ( - NDDataset, optional) β Original dataset. If is not provided (default), the- Xattribute is used and X_hat is computed using- inverse_transform.
- X_hat ( - NDDataset, optional) β Inverse transformed dataset. if- Xis provided,- X_hatmust also be provided as compuyed externally.
- **kwargs (keyword parameters, optional) β See Other Parameters. 
 
- Returns:
- Axesβ Matplotlib subplot axe.
- Other Parameters:
- colors ( - tupleor- ndarrayof 3 colors, optional) β Colors for- X,- X_hatand residuals- E. in the case of 2D, The default colormap is used for- X. By default, the three colors are- NBlue,- NGreenand- NRed(which are colorblind friendly).
- offset ( - float, optional, default:- None) β Specify the separation (in percent) between the \(X\) , \(X_hat\) and \(E\).
- nb_traces ( - intor- 'all', optional) β Number of lines to display. Default is- 'all'.
- **others (Other keywords parameters) β Parameters passed to the internal - plotmethod of the- Xdataset.
 
 
 - reconstruct(X_transform=None, **kwargs)[source]ο
- Transform data back to its original space. - In other words, return an input - X_originalwhose reduce/transform would be- X_transform.- Parameters:
- X_transform (array-like of shape (n_observations, n_components), optional) β Reduced - Xdata, where- n_observationsis the number of observations and- n_componentsis the number of components. If- X_transformis not provided, a transform of- Xprovided in- fitis performed first.
- **kwargs (keyword parameters, optional) β See Other Parameters. 
 
- Returns:
- NDDatasetβ Dataset with shape (n_observations, n_features).
- Other Parameters:
- n_components ( - int, optional) β The number of components to use for the reduction. If not given the number of components is eventually the one specified or determined in the- fitprocess.
 - See also - reconstruct
- Alias of inverse_transform (Deprecated). 
 - Notes - Deprecated in version 0.6. 
 - reduce(X=None, **kwargs)[source]ο
- Apply dimensionality reduction to - X.- Parameters:
- X ( - NDDatasetor array-like of shape (n_observations, n_features), optional) β New data, where n_observations is the number of observations and n_features is the number of features. if not provided, the input dataset of the- fitmethod will be used.
- **kwargs (keyword parameters, optional) β See Other Parameters. 
 
- Returns:
- NDDatasetβ Dataset with shape (n_observations, n_components).
- Other Parameters:
- n_components ( - int, optional) β The number of components to use for the reduction. If not given the number of components is eventually the one specified or determined in the- fitprocess.
 - Notes - Deprecated in version 0.6. 
 - transform(X=None, **kwargs)ο
- Apply dimensionality reduction to - X.- Parameters:
- X ( - NDDatasetor array-like of shape (n_observations, n_features), optional) β New data, where n_observations is the number of observations and n_features is the number of features. if not provided, the input dataset of the- fitmethod will be used.
- **kwargs (keyword parameters, optional) β See Other Parameters. 
 
- Returns:
- NDDatasetβ Dataset with shape (n_observations, n_components).
- Other Parameters:
- n_components ( - int, optional) β The number of components to use for the reduction. If not given the number of components is eventually the one specified or determined in the- fitprocess.
 
 
Examples using spectrochempy.Optimize
 
Processing NMR spectra (slicing, baseline correction, peak picking, peak fitting)
 
 
