spectrochempy.whittaker
- whittaker(dataset, lamb=1.0, order=2, **kwargs)[source]
- Smooth the data using the Whittaker smoothing algorithm. - This implementation based on the work by Eilers [2003] uses sparse matrices enabling high-speed processing of large input vectors. - Copyright M. H. V. Werts, 2017 (see LICENSES/WITTAKER_SMOOTH_LICENSE.rst) - Parameters:
- dataset ( - NDDatasetor array-like of shape (- n_observations,- n_features)) – Input data, where n_observations is the number of observations and n_features is the number of features.
- lamb ( - float, optional, default: 1.0) – Smoothing/Regularization parameter. The larger- lamb, the smoother the data.
- order ( - int, optional, default=2) – The difference order of the penalized least-squares.
- **kwargs (keyword parameters, optional) – See Other Parameters. 
 
- Returns:
- NDdataset– Smoothed data.
- Other Parameters:
- dim ( - intor- str, optional, default: -1,) – Dimension along which the method is applied. By default, the method is applied to the last dimension. If- dimis specified as an integer it is equivalent to the usual- axisnumpy parameter.
- log_level (any of [ - "INFO",- "DEBUG",- "WARNING",- "ERROR"], optional, default:- "WARNING") – The log level at startup. It can be changed later on using the- set_log_levelmethod or by changing the- log_levelattribute.