spectrochempy.IRIS
- class IRIS(log_level='WARNING', warm_start=False, *, qpsolver='osqp', reg_par=None)[source][source]
Integral inversion solver for spectroscopic data (IRIS).
IRIS, a model developed by Stelmachowski et al. [2013], solves integral equation of the first kind of 1 or 2 dimensions, i.e., finds a distribution function \(f(p)\) or \(f(c,p)\) of contributions to univariate data \(a(p)\) or multivariate \(a(c, p)\) data evolving with an external experimental variable \(p\) (time, pressure, temperature, concentration, …) according to the integral transform:\[a(c, p) = \int_{min}^{max} k(q, p) f(c, q) dq\]\[a(p) = \int_{min}^{max} k(q, p) f(q) dq\]where the kernel \(k(q, p)\) expresses the functional dependence of a single contribution with respect to the experimental variable \(p\) and ‘internal’ physico-chemical variable \(q\) .
Regularization is triggered when
reg_paris set to an array of two or three values.If
reg_parhas two values [min,max], the optimum regularization parameter is searched between \(10^{min}\) and \(10^{max}\). Automatic search of the regularization is made using the Cultrera_Callegaro algorithm (:cite:p:cultrera:2020) which involves the Menger curvature of a circumcircle and the golden section search method.If three values are given ([
min,max,num]), then the inversion will be made fornumvalues evenly spaced on a log scale between \(10^{min}\) and \(10^{max}\).- Parameters:
log_level (any of [
"INFO","DEBUG","WARNING","ERROR"], optional, default:"WARNING") – The log level at startup. It can be changed later on using theset_log_levelmethod or by changing thelog_levelattribute.warm_start (
bool, optional, default:False) – When fitting repeatedly on the same dataset, but for multiple parameter values (such as to find the value maximizing performance), it may be possible to reuse previous model learned from the previous parameter value, saving time.When
warm_startisTrue, the existing fitted model attributes is used to initialize the new model in a subsequent call tofit.qpsolver (any value of [
'osqp','quadprog'], optional, default:'osqp') – Quatratic programming solver (osqp(default) orquadprog). Note that quadprog is not installed with spectrochempy.reg_par (
list, optional, default: []) – Regularization parameter (two values [min,max] or three values [start,stop,num]. Ifreg_paris None, no regularization is applied.
See also
EFAPerform an Evolving Factor Analysis (forward and reverse).
FastICAPerform Independent Component Analysis with a fast algorithm.
MCRALSPerform MCR-ALS of a dataset knowing the initial \(C\) or \(S^T\) matrix.
NMFNon-Negative Matrix Factorization.
PCAPerform Principal Components Analysis.
SIMPLISMASIMPLe to use Interactive Self-modeling Mixture Analysis.
SVDPerform a Singular Value Decomposition.
Initialize the BaseConfigurable class.
- Parameters:
log_level (int, optional) – The log level at startup. Default is logging.WARNING.
**kwargs (dict) – Additional keyword arguments for configuration.
Attributes Summary
Return the X input dataset (eventually modified by the model).
The
Yinput.NDDatasetwith components in feature space (n_components, n_features).traitlets.config.Configobject.Return
logoutput.Number of components that were fitted.
Object name
Quatratic programming solver (
osqp(default) orquadprog).Regularization parameter (two values [
min,max] or three values [start,stop,num].Methods Summary
fit(X[, Y])Fit the model with
Xas input dataset.fit_transform(X[, Y])Fit the model with
Xand apply the dimensionality reduction onX.get_components([n_components])Return the component's dataset: (selected n_components, n_features).
Transform data back to the original space.
parameters([replace, removed, default])Alias for
paramsmethod.params([default])Return current or default configuration values.
plotdistribution([index])Plot the distribution function.
plotlcurve([scale, title])Plot the
L-Curve.plotmerit([index])Plot the input dataset, reconstructed dataset and residuals.
reconstruct([X_transform])Transform data back to its original space.
reduce([X])Apply dimensionality reduction to
X.reset()Reset configuration parameters to their default values.
to_dict()Return config value in a dict form.
transform([X])Apply dimensionality reduction to
X.Attributes Documentation
- X
Return the X input dataset (eventually modified by the model).
- components
NDDatasetwith components in feature space (n_components, n_features).See also
get_componentsRetrieve only the specified number of components.
- config
traitlets.config.Configobject.
- log
Return
logoutput.
- n_components
Number of components that were fitted.
- name
Object name
- qpsolver
Quatratic programming solver (
osqp(default) orquadprog). Note that quadprog is not installed with spectrochempy.
- reg_par
Regularization parameter (two values [
min,max] or three values [start,stop,num]. Ifreg_paris None, no regularization is applied.
Methods Documentation
- fit(X, Y=None)[source]
Fit the model with
Xas input dataset.- Parameters:
X (
NDDatasetor array-like of shape (n_observations, n_features)) – Training data.Y (any) – Depends on the model.
- Returns:
self – The fitted instance itself.
See also
fit_transformFit the model with an input dataset
Xand apply the dimensionality reduction onX.fit_reduceAlias of
fit_transform(Deprecated).
- fit_transform(X, Y=None, **kwargs)[source]
Fit the model with
Xand apply the dimensionality reduction onX.- Parameters:
X (
NDDatasetor array-like of shape (n_observations, n_features)) – Training data.Y (any) – Depends on the model.
**kwargs (keyword parameters, optional) – See Other Parameters.
- Returns:
NDDataset– Dataset with shape (n_observations, n_components).- Other Parameters:
n_components (
int, optional) – The number of components to use for the reduction. If not given the number of components is eventually the one specified or determined in thefitprocess.
- get_components(n_components=None)
Return the component’s dataset: (selected n_components, n_features).
- Parameters:
n_components (
int, optional, default:None) – The number of components to keep in the output dataset. IfNone, all calculated components are returned.- Returns:
NDDataset– Dataset with shape (n_components, n_features)
- inverse_transform()[source][source]
Transform data back to the original space.
The following matrix operation is performed : \(\hat{X} = K.f[i]\) for each value of the regularization parameter.
- Returns:
NDDataset– The reconstructed dataset.
- parameters(replace="params", removed="0.7.1") def parameters(self, default=False)[source]
Alias for
paramsmethod.
- plotdistribution(index=None, **kwargs)[source][source]
Plot the distribution function.
This function plots the distribution function f of the
IRISobject.
- plotmerit(index=None, **kwargs)[source][source]
Plot the input dataset, reconstructed dataset and residuals.
- Parameters:
- Returns:
- Other Parameters:
colors (
tupleorndarrayof 3 colors, optional) – Colors forX,X_hatand residualsE. in the case of 2D, The default colormap is used forX. By default, the three colors areNBlue,NGreenandNRed(which are colorblind friendly).offset (
float, optional, default:None) – Specify the separation (in percent) between the \(X\) , \(X_hat\) and \(E\).nb_traces (
intor'all', optional) – Number of lines to display. Default is'all'.**others (Other keywords parameters) – Parameters passed to the internal
plotmethod of theXdataset.
- reconstruct(X_transform=None, **kwargs)[source]
Transform data back to its original space.
In other words, return an input
X_originalwhose reduce/transform would beX_transform.- Parameters:
X_transform (array-like of shape (n_observations, n_components), optional) – Reduced
Xdata, wheren_observationsis the number of observations andn_componentsis the number of components. IfX_transformis not provided, a transform ofXprovided infitis performed first.**kwargs (keyword parameters, optional) – See Other Parameters.
- Returns:
NDDataset– Dataset with shape (n_observations, n_features).- Other Parameters:
n_components (
int, optional) – The number of components to use for the reduction. If not given the number of components is eventually the one specified or determined in thefitprocess.
See also
reconstructAlias of inverse_transform (Deprecated).
Notes
Deprecated in version 0.6.
- reduce(X=None, **kwargs)[source]
Apply dimensionality reduction to
X.- Parameters:
X (
NDDatasetor array-like of shape (n_observations, n_features), optional) – New data, where n_observations is the number of observations and n_features is the number of features. if not provided, the input dataset of thefitmethod will be used.**kwargs (keyword parameters, optional) – See Other Parameters.
- Returns:
NDDataset– Dataset with shape (n_observations, n_components).- Other Parameters:
n_components (
int, optional) – The number of components to use for the reduction. If not given the number of components is eventually the one specified or determined in thefitprocess.
Notes
Deprecated in version 0.6.
- transform(X=None, **kwargs)
Apply dimensionality reduction to
X.- Parameters:
X (
NDDatasetor array-like of shape (n_observations, n_features), optional) – New data, where n_observations is the number of observations and n_features is the number of features. if not provided, the input dataset of thefitmethod will be used.**kwargs (keyword parameters, optional) – See Other Parameters.
- Returns:
NDDataset– Dataset with shape (n_observations, n_components).- Other Parameters:
n_components (
int, optional) – The number of components to use for the reduction. If not given the number of components is eventually the one specified or determined in thefitprocess.
Examples using spectrochempy.IRIS