spectrochempy.whittaker
- whittaker(dataset, lamb=1.0, order=2, **kwargs)[source][source]
Smooth the data using the Whittaker smoothing algorithm.
This implementation based on the work by Eilers [2003] uses sparse matrices enabling high-speed processing of large input vectors.
Copyright M. H. V. Werts, 2017 (see LICENSES/WITTAKER_SMOOTH_LICENSE.rst)
- Parameters:
dataset (
NDDataset
or array-like of shape (n_observations
,n_features
)) – Input data, where n_observations is the number of observations and n_features is the number of features.lamb (
float
, optional, default: 1.0) – Smoothing/Regularization parameter. The largerlamb
, the smoother the data.order (
int
, optional, default=2) – The difference order of the penalized least-squares.**kwargs (keyword parameters, optional) – See Other Parameters.
- Returns:
NDdataset
– Smoothed data.- Other Parameters:
dim (
int
orstr
, optional, default: -1,) – Dimension along which the method is applied. By default, the method is applied to the last dimension. Ifdim
is specified as an integer it is equivalent to the usualaxis
numpy parameter.log_level (any of [
"INFO"
,"DEBUG"
,"WARNING"
,"ERROR"
], optional, default:"WARNING"
) – The log level at startup. It can be changed later on using theset_log_level
method or by changing thelog_level
attribute.