spectrochempy.NMF
- class NMF(*, log_level='WARNING', warm_start=False, alpha_H='same', alpha_W=0.0, beta_loss='frobenius', init=None, l1_ratio=0.0, max_iter=200, n_components=2, random_state=None, shuffle=False, solver='cd', tol=0.0001)[source][source]
Non-Negative Matrix Factorization (NMF).
Use
sklearn.decomposition.NMF.Find two non-negative matrices, i.e., matrices with all non-negative elements, (
W,H) whose product approximates the non-negative matrixX. This factorization can be used for example for dimensionality reduction, source separation or topic extraction.- Parameters:
log_level (any of [
"INFO","DEBUG","WARNING","ERROR"], optional, default:"WARNING") – The log level at startup. It can be changed later on using theset_log_levelmethod or by changing thelog_levelattribute.warm_start (
bool, optional, default:False) – When fitting repeatedly on the same dataset, but for multiple parameter values (such as to find the value maximizing performance), it may be possible to reuse previous model learned from the previous parameter value, saving time.When
warm_startisTrue, the existing fitted model attributes is used to initialize the new model in a subsequent call tofit.alpha_H (a float or any of [‘same’], optional, default:
'same') – Constant that multiplies the regularization terms ofH. Set it to zeroto have no regularization onH. If “same” (default), it takes the samevalue asalpha_W.alpha_W (
float, optional, default: 0.0) – Constant that multiplies the regularization terms ofW. Set it to zero(default) to have no regularization onW.beta_loss (a float or any of [‘frobenius’, ‘kullback-leibler’, ‘itakura-saito’], optional, default:
'frobenius') – Beta divergence to be minimized, measuring the distance between Xand the dot product WH. Note that values different from ‘frobenius’ (or 2) and ‘kullback-leibler’ (or 1) lead to significantly slower fits. Note that for beta_loss <= 0 (or ‘itakura-saito’), the input matrix X cannot contain zeros. Used only in ‘mu’ solver.init (any value of [
'random','nndsvd','nndsvda','nndsvdar','custom'], optional, default:None) – Method used to initialize the procedure.Valid options:
None: ‘nndsvda’ if n_components <= min(n_samples, n_features), otherwise random.random: non-negative random matrices, scaled with: sqrt(X.mean() / n_components)nndsvd: Nonnegative Double Singular Value Decomposition (NNDSVD) initialization (better for sparseness)nndsvda: NNDSVD with zeros filled with the average of X (better when sparsity is not desired)nndsvdarNNDSVD with zeros filled with small random values (generally faster, less accurate alternative to NNDSVDa for when sparsity is not desired)custom: use custom matrices W and H.
l1_ratio (
float, optional, default: 0.0) – The regularization mixing parameter, with 0 <= l1_ratio <= 1. - For l1_ratio = 0 the penalty is an elementwise L2 penalty (aka Frobenius Norm). - For l1_ratio = 1 it is an elementwise L1 penalty. - For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2.max_iter (
int, optional, default: 200) – Maximum number of iterations before timing out.n_components (
int, optional, default: 2) – Number of components to use.random_state (an int or a RandomState, optional, default:
None) – Used for initialisation (wheninit== ‘nndsvdar’ or ‘random’), and in Coordinate Descent. Pass an int, for reproducible results across multiple function calls.shuffle (
bool, optional, default: False) – If true, randomize the order of coordinates in the CD solver.solver (any value of [
'cd','mu'], optional, default:'cd') – Numerical solver to use: - ‘cd’ is a Coordinate Descent solver. - ‘mu’ is a Multiplicative Update solver.tol (
float, optional, default: 0.0001) – Tolerance of the stopping condition.
See also
EFAPerform an Evolving Factor Analysis (forward and reverse).
FastICAPerform Independent Component Analysis with a fast algorithm.
IRISIntegral inversion solver for spectroscopic data.
MCRALSPerform MCR-ALS of a dataset knowing the initial \(C\) or \(S^T\) matrix.
PCAPerform Principal Components Analysis.
SIMPLISMASIMPLe to use Interactive Self-modeling Mixture Analysis.
SVDPerform a Singular Value Decomposition.
Initialize the BaseConfigurable class.
- Parameters:
log_level (int, optional) – The log level at startup. Default is logging.WARNING.
**kwargs (dict) – Additional keyword arguments for configuration.
Attributes Summary
Return the X input dataset (eventually modified by the model).
The
Yinput.Constant that multiplies the regularization terms of
H.Constant that multiplies the regularization terms of
W.Beta divergence to be minimized, measuring the distance between Xand the dot product WH.
NDDatasetwith components in feature space (n_components, n_features).traitlets.config.Configobject.Method used to initialize the procedure.
The regularization mixing parameter, with 0 <= l1_ratio <= 1.
Return
logoutput.Maximum number of iterations before timing out.
Number of components to use.
Object name
Used for initialisation (when
init== 'nndsvdar' or 'random'), and in Coordinate Descent.If true, randomize the order of coordinates in the CD solver.
Numerical solver to use: - 'cd' is a Coordinate Descent solver.
Tolerance of the stopping condition.
Methods Summary
fit(X)Fit the NMF model on X.
fit_transform(X[, Y])Fit the model with
Xand apply the dimensionality reduction onX.get_components([n_components])Return the component's dataset: (selected n_components, n_features).
inverse_transform([X_transform])Transform data back to its original space.
parameters([replace, removed, default])Alias for
paramsmethod.params([default])Return current or default configuration values.
plotmerit([X, X_hat])Plot the input (
X), reconstructed (X_hat) and residuals.reconstruct([X_transform])Transform data back to its original space.
reduce([X])Apply dimensionality reduction to
X.reset()Reset configuration parameters to their default values.
to_dict()Return config value in a dict form.
transform([X])Apply dimensionality reduction to
X.Attributes Documentation
- X
Return the X input dataset (eventually modified by the model).
- alpha_H
Constant that multiplies the regularization terms of
H. Set it to zeroto have no regularization onH. If “same” (default), it takes the samevalue asalpha_W.
- alpha_W
Constant that multiplies the regularization terms of
W. Set it to zero(default) to have no regularization onW.
- beta_loss
Beta divergence to be minimized, measuring the distance between Xand the dot product WH. Note that values different from ‘frobenius’ (or 2) and ‘kullback-leibler’ (or 1) lead to significantly slower fits. Note that for beta_loss <= 0 (or ‘itakura-saito’), the input matrix X cannot contain zeros. Used only in ‘mu’ solver.
- components
NDDatasetwith components in feature space (n_components, n_features).See also
get_componentsRetrieve only the specified number of components.
- config
traitlets.config.Configobject.
- init
Method used to initialize the procedure.
Valid options:
None: ‘nndsvda’ if n_components <= min(n_samples, n_features), otherwise random.random: non-negative random matrices, scaled with: sqrt(X.mean() / n_components)nndsvd: Nonnegative Double Singular Value Decomposition (NNDSVD) initialization (better for sparseness)nndsvda: NNDSVD with zeros filled with the average of X (better when sparsity is not desired)nndsvdarNNDSVD with zeros filled with small random values (generally faster, less accurate alternative to NNDSVDa for when sparsity is not desired)custom: use custom matrices W and H.
- l1_ratio
The regularization mixing parameter, with 0 <= l1_ratio <= 1. - For l1_ratio = 0 the penalty is an elementwise L2 penalty (aka Frobenius Norm). - For l1_ratio = 1 it is an elementwise L1 penalty. - For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2.
- log
Return
logoutput.
- max_iter
Maximum number of iterations before timing out.
- n_components
Number of components to use.
- name
Object name
- random_state
Used for initialisation (when
init== ‘nndsvdar’ or ‘random’), and in Coordinate Descent. Pass an int, for reproducible results across multiple function calls.
- shuffle
If true, randomize the order of coordinates in the CD solver.
- solver
Numerical solver to use: - ‘cd’ is a Coordinate Descent solver. - ‘mu’ is a Multiplicative Update solver.
- tol
Tolerance of the stopping condition.
Methods Documentation
- fit(X)[source][source]
Fit the NMF model on X.
- Parameters:
X (
NDDatasetor array-like of shape (n_observations, n_features)) – Training data.- Returns:
self – The fitted instance itself.
See also
fit_transformFit the model with an input dataset
Xand apply the dimensionality reduction onX.fit_reduceAlias of
fit_transform(Deprecated).
- fit_transform(X, Y=None, **kwargs)[source]
Fit the model with
Xand apply the dimensionality reduction onX.- Parameters:
X (
NDDatasetor array-like of shape (n_observations, n_features)) – Training data.Y (any) – Depends on the model.
**kwargs (keyword parameters, optional) – See Other Parameters.
- Returns:
NDDataset– Dataset with shape (n_observations, n_components).- Other Parameters:
n_components (
int, optional) – The number of components to use for the reduction. If not given the number of components is eventually the one specified or determined in thefitprocess.
- get_components(n_components=None)
Return the component’s dataset: (selected n_components, n_features).
- Parameters:
n_components (
int, optional, default:None) – The number of components to keep in the output dataset. IfNone, all calculated components are returned.- Returns:
NDDataset– Dataset with shape (n_components, n_features)
- inverse_transform(X_transform=None, **kwargs)
Transform data back to its original space.
In other words, return an input
X_originalwhose reduce/transform would beX_transform.- Parameters:
X_transform (array-like of shape (n_observations, n_components), optional) – Reduced
Xdata, wheren_observationsis the number of observations andn_componentsis the number of components. IfX_transformis not provided, a transform ofXprovided infitis performed first.**kwargs (keyword parameters, optional) – See Other Parameters.
- Returns:
NDDataset– Dataset with shape (n_observations, n_features).- Other Parameters:
n_components (
int, optional) – The number of components to use for the reduction. If not given the number of components is eventually the one specified or determined in thefitprocess.
See also
reconstructAlias of inverse_transform (Deprecated).
- parameters(replace="params", removed="0.7.1") def parameters(self, default=False)[source]
Alias for
paramsmethod.
- plotmerit(X=None, X_hat=None, **kwargs)[source]
Plot the input (
X), reconstructed (X_hat) and residuals.\(X\) and \(\hat{X}\) can be passed as arguments. If not, the
Xattribute is used for \(X`and :math:\)hat{X}`is computed by theinverse_transformmethod- Parameters:
X (
NDDataset, optional) – Original dataset. If is not provided (default), theXattribute is used and X_hat is computed usinginverse_transform.X_hat (
NDDataset, optional) – Inverse transformed dataset. ifXis provided,X_hatmust also be provided as compuyed externally.**kwargs (keyword parameters, optional) – See Other Parameters.
- Returns:
Axes– Matplotlib subplot axe.- Other Parameters:
colors (
tupleorndarrayof 3 colors, optional) – Colors forX,X_hatand residualsE. in the case of 2D, The default colormap is used forX. By default, the three colors areNBlue,NGreenandNRed(which are colorblind friendly).offset (
float, optional, default:None) – Specify the separation (in percent) between the \(X\) , \(X_hat\) and \(E\).nb_traces (
intor'all', optional) – Number of lines to display. Default is'all'.**others (Other keywords parameters) – Parameters passed to the internal
plotmethod of theXdataset.
- reconstruct(X_transform=None, **kwargs)[source]
Transform data back to its original space.
In other words, return an input
X_originalwhose reduce/transform would beX_transform.- Parameters:
X_transform (array-like of shape (n_observations, n_components), optional) – Reduced
Xdata, wheren_observationsis the number of observations andn_componentsis the number of components. IfX_transformis not provided, a transform ofXprovided infitis performed first.**kwargs (keyword parameters, optional) – See Other Parameters.
- Returns:
NDDataset– Dataset with shape (n_observations, n_features).- Other Parameters:
n_components (
int, optional) – The number of components to use for the reduction. If not given the number of components is eventually the one specified or determined in thefitprocess.
See also
reconstructAlias of inverse_transform (Deprecated).
Notes
Deprecated in version 0.6.
- reduce(X=None, **kwargs)[source]
Apply dimensionality reduction to
X.- Parameters:
X (
NDDatasetor array-like of shape (n_observations, n_features), optional) – New data, where n_observations is the number of observations and n_features is the number of features. if not provided, the input dataset of thefitmethod will be used.**kwargs (keyword parameters, optional) – See Other Parameters.
- Returns:
NDDataset– Dataset with shape (n_observations, n_components).- Other Parameters:
n_components (
int, optional) – The number of components to use for the reduction. If not given the number of components is eventually the one specified or determined in thefitprocess.
Notes
Deprecated in version 0.6.
- transform(X=None, **kwargs)
Apply dimensionality reduction to
X.- Parameters:
X (
NDDatasetor array-like of shape (n_observations, n_features), optional) – New data, where n_observations is the number of observations and n_features is the number of features. if not provided, the input dataset of thefitmethod will be used.**kwargs (keyword parameters, optional) – See Other Parameters.
- Returns:
NDDataset– Dataset with shape (n_observations, n_components).- Other Parameters:
n_components (
int, optional) – The number of components to use for the reduction. If not given the number of components is eventually the one specified or determined in thefitprocess.
Examples using spectrochempy.NMF