spectrochempy.SVD
- class SVD(**kwargs)[source][source]
Singular Value Decomposition (SVD).
The SVD is commonly written as \(X = U \Sigma V^{T}\).
This class has the attributes : U, s = diag(S) and VT=V \(^T\).
If the dataset contains masked values, the corresponding ranges are ignored in the calculation.
- Parameters:
log_level (any of [
"INFO","DEBUG","WARNING","ERROR"], optional, default:"WARNING") – The log level at startup. It can be changed later on using theset_log_levelmethod or by changing thelog_levelattribute.warm_start (
bool, optional, default:False) – When fitting repeatedly on the same dataset, but for multiple parameter values (such as to find the value maximizing performance), it may be possible to reuse previous model learned from the previous parameter value, saving time.When
warm_startisTrue, the existing fitted model attributes is used to initialize the new model in a subsequent call tofit.
See also
EFAPerform an Evolving Factor Analysis (forward and reverse).
FastICAPerform Independent Component Analysis with a fast algorithm.
IRISIntegral inversion solver for spectroscopic data.
MCRALSPerform MCR-ALS of a dataset knowing the initial \(C\) or \(S^T\) matrix.
NMFNon-Negative Matrix Factorization.
PCAPerform Principal Components Analysis.
SIMPLISMASIMPLe to use Interactive Self-modeling Mixture Analysis.
Examples
>>> dataset = scp.read('irdata/nh4y-activation.spg') >>> svd = scp.SVD() >>> svd.fit(dataset) <svd: U(55, 55), s(55), VT(55, 5549)> >>> print(svd.ev.data) [1.185e+04 634 ... 0.001089 0.000975] >>> print(svd.ev_cum.data) [ 94.54 99.6 ... 100 100] >>> print(svd.ev_ratio.data) [ 94.54 5.059 ... 8.687e-06 7.779e-06]
Initialize the BaseConfigurable class.
- Parameters:
log_level (int, optional) – The log level at startup. Default is logging.WARNING.
**kwargs (dict) – Additional keyword arguments for configuration.
Attributes Summary
Return the left unitary matrix.
Return a transpose matrix of the Loadings.
Return the X input dataset (eventually modified by the model).
The
Yinput.NDDatasetwith components in feature space (n_components, n_features).Whether or not to compute U and VT in addition to s.
traitlets.config.Configobject.Return Cumulative Explained Variance.
Return a NDDataset of the explained variance.
Return Cumulative Explained Variance.
Return Explained Variance per singular values.
Return a NDDataset of the explained variance.
Return Explained Variance per singular values.
If False , U and VT have the shapes (M, k) and (k, N), respectively, where k = min(M, N).
Return
logoutput.Number of components that were fitted.
Object name
Return Vector of singular values .
Return a NDDataset containing singular values.
Return a NDDataset containing singular values.
Methods Summary
fit(X)Fit the SVD model on X.
fit_transform(X[, Y])Fit the model with
Xand apply the dimensionality reduction onX.get_components([n_components])Return the component's dataset: (selected n_components, n_features).
inverse_transform([X_transform])Transform data back to its original space.
parameters([replace, removed, default])Alias for
paramsmethod.params([default])Return current or default configuration values.
plotmerit([X, X_hat])Plot the input (
X), reconstructed (X_hat) and residuals.reconstruct([X_transform])Transform data back to its original space.
reduce([X])Apply dimensionality reduction to
X.reset()Reset configuration parameters to their default values.
to_dict()Return config value in a dict form.
transform([X])Apply dimensionality reduction to
X.Attributes Documentation
- U
Return the left unitary matrix.
Its shape depends on
full_matrices.
- VT
Return a transpose matrix of the Loadings.
Its shape depends on
full_matrices
- X
Return the X input dataset (eventually modified by the model).
- components
NDDatasetwith components in feature space (n_components, n_features).See also
get_componentsRetrieve only the specified number of components.
- compute_uv
Whether or not to compute U and VT in addition to s.
- config
traitlets.config.Configobject.
- cumulative_explained_variance
Return Cumulative Explained Variance.
- ev
Return a NDDataset of the explained variance.
- ev_cum
Return Cumulative Explained Variance.
- ev_ratio
Return Explained Variance per singular values.
- explained_variance
Return a NDDataset of the explained variance.
- explained_variance_ratio
Return Explained Variance per singular values.
- full_matrices
If False , U and VT have the shapes (M, k) and (k, N), respectively, where k = min(M, N). Otherwise the shapes will be (M, M) and (N, N), respectively.
- log
Return
logoutput.
- n_components
Number of components that were fitted.
- name
Object name
- s
Return Vector of singular values .
- singular_values
Return a NDDataset containing singular values.
- sv
Return a NDDataset containing singular values.
Methods Documentation
- fit(X)[source][source]
Fit the SVD model on X.
- Parameters:
X (
NDDatasetor array-like of shape (n_observations, n_features)) – Training data.- Returns:
self – The fitted instance itself.
See also
fit_transformFit the model with an input dataset
Xand apply the dimensionality reduction onX.fit_reduceAlias of
fit_transform(Deprecated).
- fit_transform(X, Y=None, **kwargs)[source]
Fit the model with
Xand apply the dimensionality reduction onX.- Parameters:
X (
NDDatasetor array-like of shape (n_observations, n_features)) – Training data.Y (any) – Depends on the model.
**kwargs (keyword parameters, optional) – See Other Parameters.
- Returns:
NDDataset– Dataset with shape (n_observations, n_components).- Other Parameters:
n_components (
int, optional) – The number of components to use for the reduction. If not given the number of components is eventually the one specified or determined in thefitprocess.
- get_components(n_components=None)
Return the component’s dataset: (selected n_components, n_features).
- Parameters:
n_components (
int, optional, default:None) – The number of components to keep in the output dataset. IfNone, all calculated components are returned.- Returns:
NDDataset– Dataset with shape (n_components, n_features)
- inverse_transform(X_transform=None, **kwargs)
Transform data back to its original space.
In other words, return an input
X_originalwhose reduce/transform would beX_transform.- Parameters:
X_transform (array-like of shape (n_observations, n_components), optional) – Reduced
Xdata, wheren_observationsis the number of observations andn_componentsis the number of components. IfX_transformis not provided, a transform ofXprovided infitis performed first.**kwargs (keyword parameters, optional) – See Other Parameters.
- Returns:
NDDataset– Dataset with shape (n_observations, n_features).- Other Parameters:
n_components (
int, optional) – The number of components to use for the reduction. If not given the number of components is eventually the one specified or determined in thefitprocess.
See also
reconstructAlias of inverse_transform (Deprecated).
- parameters(replace="params", removed="0.7.1") def parameters(self, default=False)[source]
Alias for
paramsmethod.
- plotmerit(X=None, X_hat=None, **kwargs)[source]
Plot the input (
X), reconstructed (X_hat) and residuals.\(X\) and \(\hat{X}\) can be passed as arguments. If not, the
Xattribute is used for \(X`and :math:\)hat{X}`is computed by theinverse_transformmethod- Parameters:
X (
NDDataset, optional) – Original dataset. If is not provided (default), theXattribute is used and X_hat is computed usinginverse_transform.X_hat (
NDDataset, optional) – Inverse transformed dataset. ifXis provided,X_hatmust also be provided as compuyed externally.**kwargs (keyword parameters, optional) – See Other Parameters.
- Returns:
Axes– Matplotlib subplot axe.- Other Parameters:
colors (
tupleorndarrayof 3 colors, optional) – Colors forX,X_hatand residualsE. in the case of 2D, The default colormap is used forX. By default, the three colors areNBlue,NGreenandNRed(which are colorblind friendly).offset (
float, optional, default:None) – Specify the separation (in percent) between the \(X\) , \(X_hat\) and \(E\).nb_traces (
intor'all', optional) – Number of lines to display. Default is'all'.**others (Other keywords parameters) – Parameters passed to the internal
plotmethod of theXdataset.
- reconstruct(X_transform=None, **kwargs)[source]
Transform data back to its original space.
In other words, return an input
X_originalwhose reduce/transform would beX_transform.- Parameters:
X_transform (array-like of shape (n_observations, n_components), optional) – Reduced
Xdata, wheren_observationsis the number of observations andn_componentsis the number of components. IfX_transformis not provided, a transform ofXprovided infitis performed first.**kwargs (keyword parameters, optional) – See Other Parameters.
- Returns:
NDDataset– Dataset with shape (n_observations, n_features).- Other Parameters:
n_components (
int, optional) – The number of components to use for the reduction. If not given the number of components is eventually the one specified or determined in thefitprocess.
See also
reconstructAlias of inverse_transform (Deprecated).
Notes
Deprecated in version 0.6.
- reduce(X=None, **kwargs)[source]
Apply dimensionality reduction to
X.- Parameters:
X (
NDDatasetor array-like of shape (n_observations, n_features), optional) – New data, where n_observations is the number of observations and n_features is the number of features. if not provided, the input dataset of thefitmethod will be used.**kwargs (keyword parameters, optional) – See Other Parameters.
- Returns:
NDDataset– Dataset with shape (n_observations, n_components).- Other Parameters:
n_components (
int, optional) – The number of components to use for the reduction. If not given the number of components is eventually the one specified or determined in thefitprocess.
Notes
Deprecated in version 0.6.
- transform(X=None, **kwargs)
Apply dimensionality reduction to
X.- Parameters:
X (
NDDatasetor array-like of shape (n_observations, n_features), optional) – New data, where n_observations is the number of observations and n_features is the number of features. if not provided, the input dataset of thefitmethod will be used.**kwargs (keyword parameters, optional) – See Other Parameters.
- Returns:
NDDataset– Dataset with shape (n_observations, n_components).- Other Parameters:
n_components (
int, optional) – The number of components to use for the reduction. If not given the number of components is eventually the one specified or determined in thefitprocess.
Examples using spectrochempy.SVD