spectrochempy.SIMPLISMAο
- class SIMPLISMA(*args, log_level='WARNING', warm_start=False, interactive=False, n_components=2, noise=3, tol=0.1)[source]ο
SIMPLe to use Interactive Self-modeling Mixture Analysis (SIMPLISMA).
This class performs a SIMPLISMA analysis of a 2D
NDDataset. The algorithm is adapted from Windig [1997].- Parameters:
log_level (any of [
"INFO","DEBUG","WARNING","ERROR"], optional, default:"WARNING") β The log level at startup. It can be changed later on using theset_log_levelmethod or by changing thelog_levelattribute.warm_start (
bool, optional, default:False) β When fitting repeatedly on the same dataset, but for multiple parameter values (such as to find the value maximizing performance), it may be possible to reuse previous model learned from the previous parameter value, saving time.When
warm_startisTrue, the existing fitted model attributes is used to initialize the new model in a subsequent call tofit.interactive (
bool, optional, default: False) β If True, the determination of purest variables is carried out interactively.n_components (
int, optional, default: 2) β The maximum number of pure compounds. Used only for non interactiveanalysis.noise (
float, optional, default: 3) β A correction factor (%) for low intensity variables (0 - no offset, 15 - large offset.tol (
float, optional, default: 0.1) β The convergence criterion on the percent of unexplained variance.
See also
EFAPerform an Evolving Factor Analysis (forward and reverse).
FastICAPerform Independent Component Analysis with a fast algorithm.
IRISIntegral inversion solver for spectroscopic data.
MCRALSPerform MCR-ALS of a dataset knowing the initial \(C\) or \(S^T\) matrix.
NMFNon-Negative Matrix Factorization.
PCAPerform Principal Components Analysis.
SVDPerform a Singular Value Decomposition.
Initialize the BaseConfigurable class.
- Parameters:
log_level (int, optional) β The log level at startup. Default is logging.WARNING.
**kwargs (dict) β Additional keyword arguments for configuration.
Attributes Summary
Intensities ('concentrations') of pure compounds in spectra.
Purity spectra.
Spectra of pure compounds.
Return the X input dataset (eventually modified by the model).
The
Yinput.NDDatasetwith components in feature space (n_components, n_features).traitlets.config.Configobject.If True, the determination of purest variables is carried out interactively.
Return
logoutput.The maximum number of pure compounds.
Object name
A correction factor (%) for low intensity variables (0 - no offset, 15 - large offset.
Standard deviation spectra.
The convergence criterion on the percent of unexplained variance.
Methods Summary
fit(X)Fit the SIMPLISMA model on X.
fit_transform(X[,Β Y])Fit the model with
Xand apply the dimensionality reduction onX.get_components([n_components])Return the component's dataset: (selected n_components, n_features).
inverse_transform([X_transform])Transform data back to its original space.
parameters([replace,Β removed,Β default])Alias for
paramsmethod.params([default])Return current or default configuration values.
plotmerit([X,Β X_hat])Plot the input (
X), reconstructed (X_hat) and residuals.reconstruct([X_transform])Transform data back to its original space.
reduce([X])Apply dimensionality reduction to
X.reset()Reset configuration parameters to their default values.
to_dict()Return config value in a dict form.
transform([X])Apply dimensionality reduction to
X.Attributes Documentation
- Cο
Intensities (βconcentrationsβ) of pure compounds in spectra.
- Ptο
Purity spectra.
- Stο
Spectra of pure compounds.
- Xο
Return the X input dataset (eventually modified by the model).
- componentsο
NDDatasetwith components in feature space (n_components, n_features).See also
get_componentsRetrieve only the specified number of components.
- configο
traitlets.config.Configobject.
- interactiveο
If True, the determination of purest variables is carried out interactively.
- logο
Return
logoutput.
- n_componentsο
The maximum number of pure compounds. Used only for non interactiveanalysis.
- nameο
Object name
- noiseο
A correction factor (%) for low intensity variables (0 - no offset, 15 - large offset.
- sο
Standard deviation spectra.
- tolο
The convergence criterion on the percent of unexplained variance.
Methods Documentation
- fit(X)[source]ο
Fit the SIMPLISMA model on X.
- Parameters:
X (
NDDatasetor array-like of shape (n_observations, n_features)) β Training data.- Returns:
self β The fitted instance itself.
See also
fit_transformFit the model with an input dataset
Xand apply the dimensionality reduction onX.fit_reduceAlias of
fit_transform(Deprecated).
- fit_transform(X, Y=None, **kwargs)[source]ο
Fit the model with
Xand apply the dimensionality reduction onX.- Parameters:
X (
NDDatasetor array-like of shape (n_observations, n_features)) β Training data.Y (any) β Depends on the model.
**kwargs (keyword parameters, optional) β See Other Parameters.
- Returns:
NDDatasetβ Dataset with shape (n_observations, n_components).- Other Parameters:
n_components (
int, optional) β The number of components to use for the reduction. If not given the number of components is eventually the one specified or determined in thefitprocess.
- get_components(n_components=None)ο
Return the componentβs dataset: (selected n_components, n_features).
- Parameters:
n_components (
int, optional, default:None) β The number of components to keep in the output dataset. IfNone, all calculated components are returned.- Returns:
NDDatasetβ Dataset with shape (n_components, n_features)
- inverse_transform(X_transform=None, **kwargs)ο
Transform data back to its original space.
In other words, return an input
X_originalwhose reduce/transform would beX_transform.- Parameters:
X_transform (array-like of shape (n_observations, n_components), optional) β Reduced
Xdata, wheren_observationsis the number of observations andn_componentsis the number of components. IfX_transformis not provided, a transform ofXprovided infitis performed first.**kwargs (keyword parameters, optional) β See Other Parameters.
- Returns:
NDDatasetβ Dataset with shape (n_observations, n_features).- Other Parameters:
n_components (
int, optional) β The number of components to use for the reduction. If not given the number of components is eventually the one specified or determined in thefitprocess.
See also
reconstructAlias of inverse_transform (Deprecated).
- parameters(replace="params", removed="0.8.0") def parameters(self, default=False)[source]ο
Alias for
paramsmethod.Deprecated since version 0.8.0: Use
paramsinstead.
- plotmerit(X=None, X_hat=None, **kwargs)[source]ο
Plot the input (
X), reconstructed (X_hat) and residuals.\(X\) and \(\hat{X}\) can be passed as arguments. If not, the
Xattribute is used for \(X`and :math:\)hat{X}`is computed by theinverse_transformmethod- Parameters:
X (
NDDataset, optional) β Original dataset. If is not provided (default), theXattribute is used and X_hat is computed usinginverse_transform.X_hat (
NDDataset, optional) β Inverse transformed dataset. ifXis provided,X_hatmust also be provided as compuyed externally.**kwargs (keyword parameters, optional) β See Other Parameters.
- Returns:
Axesβ Matplotlib subplot axe.- Other Parameters:
colors (
tupleorndarrayof 3 colors, optional) β Colors forX,X_hatand residualsE. in the case of 2D, The default colormap is used forX. By default, the three colors areNBlue,NGreenandNRed(which are colorblind friendly).offset (
float, optional, default:None) β Specify the separation (in percent) between the \(X\) , \(X_hat\) and \(E\).nb_traces (
intor'all', optional) β Number of lines to display. Default is'all'.**others (Other keywords parameters) β Parameters passed to the internal
plotmethod of theXdataset.
- reconstruct(X_transform=None, **kwargs)[source]ο
Transform data back to its original space.
In other words, return an input
X_originalwhose reduce/transform would beX_transform.- Parameters:
X_transform (array-like of shape (n_observations, n_components), optional) β Reduced
Xdata, wheren_observationsis the number of observations andn_componentsis the number of components. IfX_transformis not provided, a transform ofXprovided infitis performed first.**kwargs (keyword parameters, optional) β See Other Parameters.
- Returns:
NDDatasetβ Dataset with shape (n_observations, n_features).- Other Parameters:
n_components (
int, optional) β The number of components to use for the reduction. If not given the number of components is eventually the one specified or determined in thefitprocess.
See also
reconstructAlias of inverse_transform (Deprecated).
Notes
Deprecated in version 0.6.
- reduce(X=None, **kwargs)[source]ο
Apply dimensionality reduction to
X.- Parameters:
X (
NDDatasetor array-like of shape (n_observations, n_features), optional) β New data, where n_observations is the number of observations and n_features is the number of features. if not provided, the input dataset of thefitmethod will be used.**kwargs (keyword parameters, optional) β See Other Parameters.
- Returns:
NDDatasetβ Dataset with shape (n_observations, n_components).- Other Parameters:
n_components (
int, optional) β The number of components to use for the reduction. If not given the number of components is eventually the one specified or determined in thefitprocess.
Notes
Deprecated in version 0.6.
- transform(X=None, **kwargs)ο
Apply dimensionality reduction to
X.- Parameters:
X (
NDDatasetor array-like of shape (n_observations, n_features), optional) β New data, where n_observations is the number of observations and n_features is the number of features. if not provided, the input dataset of thefitmethod will be used.**kwargs (keyword parameters, optional) β See Other Parameters.
- Returns:
NDDatasetβ Dataset with shape (n_observations, n_components).- Other Parameters:
n_components (
int, optional) β The number of components to use for the reduction. If not given the number of components is eventually the one specified or determined in thefitprocess.
Examples using spectrochempy.SIMPLISMA