spectrochempy.ifft
- ifft(dataset, size=None, **kwargs)[source]
Apply a inverse fast fourier transform.
For multidimensional NDDataset, the apodization is by default performed on the last dimension.
The data in the last dimension MUST be in frequency (or without dimension) or an error is raised.
To make direct Fourier transform, i.e., from frequency to time domain, use the
fft
transform.- Parameters:
dataset (
NDDataset
) – The dataset on which to apply the fft transformation.size (int, optional) – Size of the transformed dataset dimension - a shorter parameter is
si
. by default, the size is the closest power of two greater than the data size.**kwargs – Optional keyword parameters (see Other Parameters).
- Returns:
out – Transformed
NDDataset
.- Other Parameters:
dim (str or int, optional, default=’x’.) – Specify on which dimension to apply this method. If
dim
is specified as an integer it is equivalent to the usualaxis
numpy parameter.inplace (bool, optional, default=False.) – True if we make the transform inplace. If False, the function return a new object
See also
fft
Direct Fourier transform.